SABER latitude coverage versus time of year May 18, 2000 launch, 74.06 degree, 4:22 PM crossing. SABER Instrument with Contamination Door Attached #### **SABER Instrument Performance Assessment** - Engineering tests and calibration show excellent off—axis rejection, excellent end-to-end linearity, and a well characterized temporal response. - The IFOV at the Earth horizon is within or at specification in all channels - The relative spectral response is within specifications in all channels and out-of-band rejection is within specifications in all but two channels. Response is known and will be included in the retrieval - Noise equivalent radiance is within specifications in all but the long λ CO2 channels (1.3 to 1.5 times) and from 2 to 15 times better in all others. - Combined retrievals using all three CO2 channels will place these channels within specfications ## **SABER Level 1B Calibrated, Spacecraft Motion Corrected Radiances** ## Tangent altitude radiance versus pressure for: | - | CO ₂ (v2)W | 15 μ m | |---|--|------------------------| | - | CO₂(υ2)N | 15 μ m | | - | O ₃(υ 3) | 9.6 μ m | | - | $O_2(^1\Delta)$ | 1.27 μ m | | - | CO₂(∪3) | 4.3 μ m | | - | H ₂ O(υ2) | 6.9 μ m | | - | OH(υ =3,4,5) | 1.6 μ m | | - | OH(υ= 7 , 8 , 9) | 2.06 μm | | - | NO(υ) | 5.3 μ m | ## **SABER Level 2A Routine Data Products** ### • Vertical profiles of the following parameters: | - | Kinetic T, P, density | 10 - 105 km | day and night | |---|---|--------------|---------------| | - | Altitude | 10 - 200 km | day and night | | - | O_3 mixing ratio (9.6 μ m) | 15 - 100 km | day and night | | - | O_3 mixing ratio (1.27 μ m) | 50 - 95 km | day | | - | H ₂ O mixing ratio | 15 - 80 km | day and night | | - | CO ₂ (4.3 μm) density | 85 – 150 km | day | | - | NO 5.3 μm VER [*] | 100 - 180 km | day and night | | - | OH 1.6 μm VER [*] | 80 - 100 km | day and night | | - | OH 2.0 μ m VER * | 80 - 100 km | day and night | | - | O₂(¹Δ) 1.27 μ m VER [*] | 50 - 105 km | day and night | | | | | | ^{*} Volume Emission Rate ## **SABER Level 3 Data Products** - Zonal mean pressure versus latitude cross sections for all parameters - Daily, weekly, monthly, and seasonally averaged - Polar stereographic maps on constant pressure and isentropic surfaces - Daily maps, weekly, monthly, and seasonally averaged maps | Activity | Science Team | GATS, Inc. | |------------------------------------|----------------------------|-------------| | 7 70 | Responsibility | Assistance | | Level 0 | Gordley | Yunfei Wang | | Level 1 | | | | CO_2 (15 μ m) | Puertas | | | O_3 (9.6 μ m) | Wintersteiner | | | H_2O (6.9 μ m) | Eden | | | NO (5.3 μm) | Mertens | | | CO ₂ (4.3 μm) | Picard | | | OH (2.0 μm) | Winick | | | OH (1.6 μm) | Baker | | | $O_2(^{1}\Delta) (1.27 \ \mu m)$ | Mlynczak | | | Level 2A | | | | T _k (P) | Gordley, Mlynczak | | | ρ, Z | Picard | | | O_3 (9.6 µm) | Remsberg, Russell, Siskind | | | O_3 (1.27 µm) | Mlynczak | | | H ₂ O | Russell, Remsberg, Siskind | | | CO_2 | Winick | | | NO VER | Gordley | | | OH 1.6 µm VER | Espy, Ulwick | | | OH 2.0 µm VER | Ulwick, Espy | | | $O_2(^1\Delta) 1.27 \ \mu m \ VER$ | Baker | | | 2(2) 1127 pm 121 | Бакег | | | Level 2B | | | | $T_k(P), \rho$ | Gordley, Mlynczak | | | [O], [H] | Baker, Espy, Ulwick | | | Geostrophic wind | Garcia | | | Cooling rates, Solar | Mlynczak | | | and Chemical heating rates | | | | Level 3 | Garcia, Roble, Solomon | | #### **Potential SABER Ground-based Collaborations** - "Direct" [O] and [H] measurements (e.g. using resonance lamp) in the 80 100 km altitude range would significantly augment energetics and chemistry investigations - Correlative Lidar temperature measurements in the 50 100 km range for validation studies - Correlative rocket measurements of O_3 , $O_2(^1\Delta)$, OH(v), OH(v), OH(v), OH(v) for validation studies - Hydroxyl rotational temperatures for validation in the 80 100 km range - Ground-based microwave measurements of H₂O, O₃, and NO for validation studies - Ground-based zenith column emission due to $O_2(^1\Delta)$ and SABER OH bands for comparison to SABER calculated values from volume emission rate data (absolute calibration of ground-based instruments essential) - Lidar heat flux measurements to complement SABER solar and chemical heating and infrared cooling determinations